
@ Fermi National Accelerator Laboratory

TM-1433
2603.001

Image Digitizer System for Bubble Chamber Laser

Herman Haggerty

December 8,1986

4s Operated by Universities Research Association Inc. under contract with the United States Department of Energy

December 8. 1986

Image Digitizer System for Bubble Chamber Laser

Herman Haggerty

Research Facilities Department

An IBM PC based image digitizer system has been assembled to

monitor the laser flash used for holography at the 15 foot bubble chamber.

The hardware and the operating software will be outlined here.

A CCD black and white camera (Sony XC-38) and its companion

power divider (Sony DC-38) are connected to a separate D.C. power

source (127 0.3A). The camera generates its own sync and outputs a

composite video through a single RG 174 cable. The camera inputs directly

to spigot #2 of an image processing board (Matrox PIP-512) located in an

expansion slot of an IBM PC/XT. This b oard digitizes the video signal and

then outputs directly to a RBG monitor (Sony CDP 1201). In another

expansion slot is a digital input card (ICS DIM 32) which is used to

trigger the image board.

For an operational test of the system, an array of LEDs was flashed

with a 10 microsecond pulse and the image was grabbed (proga

‘graboe:.c’) and processed. (A 16 mm lens was attached to the camera.)

Since the camera generates 30 frames per second, a pulse (Tl) was sent to

the digital input card l/30 second before’ the LED flash. Upon receipt of

T1, the image board is set up to grab the next frame. The camera will be

at an arbitrary time in its image transfer cycle so the LED flash will

likewise occur anywhere in the l/30 second cycle time. Iiowever, the image

is not uniformly dumped from the integrating pixels into shift registers

every l/30 second. In fact, half of the horizontal lines are shifted out ever!

1/3C second (say the odd lines) and the other half of the horizontal iines

are shifted out offset in time by l/60 second. (Each of the groups is called

a field, and the process is called interlacing. I believe it helps the eye and

brain create a smoother image.) Figure 1 shows the frame grab timing. In

case A both fields of the grabbed frame see the LED flash. In case B

however, the second field does not see the LED flash because the flash

occurred during the integration time of the previous frame’s second field.

To fm this up, after the frame is displayed on the monitor, the software

runs through each horizontal line and copies the early field onto the late

field (which may or may not be dark). This process degrades the vertical

resolution a factor of two, but the system has oodles of spatial resolution

so that’s no problem.

Summarizing, for each LED flash a pulse is sent to the digital input

board l/30 second ahead of the LED flash. The frame is grabbed and

displayed on the monitor and then the data are fudged to give a better

looking image. The new image is then displayed on the monitor.

At this point some image processing gets done that demonstrates

some of the potential of the system. A frame has 512 x 512 bytes of

information, which is more than can be quickly transfered onto the

experiment’s data tapes using the present setup. So the program averages

the pixels down to a 64 x 64 array which is then written on the PC’s

disk. This 4 kbyte array is plenty of data, enough to make a pretty clear

driver’s license sized picture. (Even 1 kbyte makes good postage stsmp

sized pictures.)

A couple of off-line type programs were made to massage the date

some more. The first program (binbasc) takes the 4 kbyte fiie and rewrites

it in a format that ‘basic’ can use. After this is done, a simple basic

progr- (mountn.bas) makes a ‘mountain plot’ of the data. Another ‘basic’

program (tshirt.bas) simulates the grayscale data with random dots so that,

a normal dot printer can make an image. (Another factor of four resolution

is lost in the process.) The source files, a.nd output from these programs

are included in Appendix 2.

Figure I

Frame Grab Timing

flash LED

Case A

Field 1

b-L Field 2

Grabbed Frame (Fields 1 and 2 see flash)

Case B

ii1 Field 1

Grabbkd Frame (Only field 1 .PXS flash)

The grabbed frame consists of the first complete
field 1 and field 2 after the trigger.

4

Appendix I

Timing Jitter and Dead Time

The presence of the input card trigger signal is detected by a

software loop which takes about 50 microseconds, hence to guarantee

detection, the trigger pulse width must be greater than 50 microseconds.

Imprecise setting of the delay time between the input card trigger

pulse and the LED flash will cause the wrong frame to be grabbed in

some cases. If the delay is too long (look at Fig. 1, Case A, and stretch

the ‘l/30 second’ mark to the right until it passes another ‘dump’ mark)

then there will be frames with the LED flash data only in Field 2. If the

delay is too short (look at Fig. 1, Case B, and move the ‘l/30 second’

mark to the left until it passes a ‘dump’ mark) there will be frames with

no LED data in either field.

There is one more delay time which needs to be considered. Once the

input trigger signal has been detected, a software command to grab a

frame is executed. The time to generate the actual hardware frame grab

signal from initiation of the software command has not been measured (call

this time tgj.

In principle, the total time delay from the beginning of the input

card trigger and the LED flash whould be l/30 second + 50 microseconds

+ tg.

The simple procedure used in ‘grabber.c’ always copies the early field

onto the late field. If the timing is set as above, and the input trigger is

detected early in the 50 microsecond software loop, then the delay is ‘too

iong’ by the remaining amount of the 50 microseconds. In this case, as

described above, there will be frames with data only in field 2. After

processing with ‘grabbe:.c’ the frame will be blank. The percentage of such

names wilI be (.5jx(.000050)x(30)=.075%. In practice, the delay was set to

l/30 second and 100 frames were grabbed with no misses, and the matter

wasn’t pursued further.

5

*X*X* Program Grabber ***** */
$ This program grabs a frame upon receipt of a TTL EAR */
/X signal to the digital input card */
/* All of the functions whose names start with fg- */
/* were supplied by Matrox with the purchase of *./
/* the digitizing board. "/
/* The program creates a file called riter3.bin */
#include <ctype.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
main0
c
unsigned short fhl,fh2,buffer1[5000],ndxl,ndx.2;
unsigned short ndx,pud,linefx;
int fh20,fh21;
char buffer[512];
short abyte;
int bits;
int del;
long addem;
int xpt,ypt,clx,c2x,cly,c2y;
bits=B;
de1=4;
fhl=open("riter3.bin",O~RDWR~O~BINARY);
printf("%Gd".fhl):
>X initialize
fg-init(620);
fg-than(2);
fg-wnc(l);
fg-sbuf(0);
pool:

the'digitizer board S/

ndxl=O;ndx2=0;ndx=D;
loop:
/* Input to dim32 card h/
abyte=inp(644);
/* Wait for a trigger on channel 0, which is base address X/
/* 640. Channel 0 gives fe return (11111110) for the byte. X/
if (abyte > Oxfe)

got0 loop;
if (abyte tOxfe)

got0 quit;
fg-snap(l);
fg-sbuf(1);
/*fix up line interlace shinola*/
linefx=O;
do{

fg-rowr(linefx+l,O,buffer);
fg-roww(linefx,O,buffer);
linefx=linefx+2;
Iwhile (linefx < 511);

clx=O ;
cly=1;

do{
c2y=cly+bits; 6
doI

c2x=clx+bits;
/* box corners clx,cly,c2x,c2y~/

addem=O;
xpt=clx;
ypt=cly;

do{
do{

addem=addem+fg-pixr(xpt,ypt)
xpt=xpt+del;

}while (xpt < c2x);
xpt=clx;
ypt=ypt+del;

Iwhile (ypt < c2y);
ypt=cly;
addem=addem/(bits*bits/(del*del));

bufferl[ndx]=addem;
ndx++;

clx=clx+bits;
Iwhile (clx < 512);

clx=O;
cly=cly+bits;

} while (cly < (512-bits) 1;
doC
pud:((bufferl[ndxl+l])<<8) IbufferlCndxl];
bufferl[ndx2]=pud;
ndx2++;ndxl++;ndxl++;
}while (ndx2 < 2048);
fh2=write(fhl,bufferl,4096);
printf("%6d",fh2);
if (abyte == Oxfe)
got0 pool;
quit:
printf(" I quit "1;
fg-exit();
1

, i’

/* w+**+ Program binbas *+**I K/
/* This program reads a file called riter3.bin and converts */
/w each byte to an integer in the format that basic can read */
/x The name of the written file is riter4.bin. */
#include s:ctype.h:>
#include s:stdio.h>
#include d:fcntl.h:h
#include (sys\types. h::-
#include s:sys\stat.h:?
#include *:io.h>
#include ,::stdlib.h>
char +yahoo;
int ndx9.bufind:
unsigned r,hort fhl,fh4,bites,numb;
unsigned short fh3;
unsigned short ndxZ,ndeZ,ndx4;
unsigned short buffer2ClXKK~l;
unsigned short p0=C1,piC~=lC~,pl3=13,p26=26;

unsigned short pl=l ,p2,p3;
unsigned short len,fubl,fub2,fub3,fub4j
unsigned short p10C1,plC~l,plC~2,fh2,nd~:;
unsigned short biteC21;
unsigned short left_over,m~lb~lfi,m~lb~lf2;
main ()
.r I
nd>:9=0;
left-over=C~;
yahoo="cachunk":
printf(yahoo);
fhl=open("riter3.bin",O~RDONLY~O~5IN~RY~;
fh2=open("riter4.bin",O~KDWR~O~~INARY);
printf ("i%x",fhl);
bufind=pO;
bites=O;
do<
fh4=read(fhi,bite,l);
numb=biteCC!lipCJ;
piCK~=numb/lCK~+4E;
plOl=(numb-l~~~:~*(plC1C~-48))/10+48;
p102=~numb-~p1C~Ci-48~~100~-~p1<~1-48~~10 +4El;
if (~100 .: 4.9)

got0 len2;
if (left-over =rJ)C

buffer2Cbufindl=(plC1C)~';~CB) :plOl;
bufind++:
b~~ffer~I.bufindl=(plCl2~C~:8) lp13;
bufind++;
left-.over=l:
>

else.:
bufferZEbufind3= (piC+::B) I plCK2;
bufind++;
b~~ffer2[:bufindl=(plCll~:~::E) lplCl2;
bufind++;
buffer2[bufindl=(pl3~:,::6) IplO;
bufind++;
left-over=c1;
1

goto lupcnd;
len2:

8

. -

if (pi01 ,I491
goto lenl;
if (left-over = Cl)<

buffcr2Cbufind3=(pl01((8) lp101;
bufind++:
bLlffer2CbLlfindl=(plJ.::.:B) IplO;
bufind++;
3

e 1 5 E' ,:
buffer2Cbilfindl=(plC),:::~::B) lp101;
buf ind++;
bilffel~2[:bLlfindl=(p102<::,:::0) IplX;
bufind++i
3

goto lupend;
lenl:
if (left-over =O) ,C

buffer2Cbufindl=(pl02((8) 1~13;
bufind++;
left~over=l;

3
else<

bi~ffer2Cb~~findl=(plO~I~::B) IplO2;
buf ind++;
bLlffer2tbufi~ndl=(p13.::~:8) 1~10;
buf ind++;
1 Ef t-,over=C~;
3

1 upend:
bites++;
:,while (bites ,C 4096);
printf (“%bd”,bufind);
if (left-over=l) <

bLlffer2i:bLlfindl=(pl~,::<:D) lp10;
bufind++:
bLlffer2ibLlfindl=(p26,::.::D) I ~0;
bufind++;

1’

El 5e:
buffer2i:bufindl= (plW:'~<B) lp26;
buf ind++:

>
do.:

mubufl=(((bliffer2Cnd:.:9l)e~?~;5)~:~:6) j
mubLlf2=(buffer2Cnd):91) :>ZpE:
buffer2~nd~9l==m~~bi~fl Imubufrl;
ndx9++;

>uthile (ndx9 <: bufind);
/* now write file*/
fh;=write(fh2?buffer,",2~.nd~9):
printf("%bx",fh3);
3

10 REM **** PROGRAM MOUNTN **XX*
20 REM This program reads a file called riter4.bin and makes a mountn
30 REM plot of the data. The assumption is made that the data corresponds
40 REM to a 64 by 64 array of 8 bit numbers. To make the plot easier
50 REM on the eye, only half of the vertical contours are plotted.
60 OPEN "i" ,#l/riter4,bin"
70 SCREEN 2,0
80 CLS
90 ORIGX=200
100
110
120
130
140
150
160
170
180
190
2(jo
210
220
230

ORIGY=30
FOR AY=2 TO 122 STEP 2
OLPIXL=O
FOR AX=1 TO 304 STEP 6
INPUT #l, PIXL
IF AY/4 <> INT(AY/4) THEN GOT0 190
PIXL=PIXL/lO
LINE (ORIGX +AX -AY,ORIGY +AY-OLPIXL)-(ORIGX+G+m-AY,ORIGY +AY-PIXL)
OLPIXL=PIXL
NEXT AX
IF AY/4 <> INT(AY/4) THEN GOT0 220
LINE (ORIGX+AX-AY,ORIGY +AY-PIXLI-(ORIGX+G+AX-AY,ORIGY +AY)
NEXT AY
INPUT XXX$

10

2” (.A
rl

11

10 REM ***** PROGRAM TSHIRT *****
20 REM this program reads a file called riter4.bin and generates random
30 REM dots in a block 3 lines deep and ten columns wide. The number
40 REM dots is proportional to the 8 bit'number read from riter4.bin.
50 REM There should be 4096 words in the file.
60 REM The blocks are arranged 64 horizontal and 60 vertical. (The last
70 REM few lines from the image digitizer are noise.)
80 OPEN "i",#l,"riterll.bin"
90 SCREEN 2,0
100 CLS
110 FOR B=l TO 180 STEP 3
120 FOR A=5 TO 640 STEP 10
130 INPUT #l,PIXL
140 PIXL=255-PIXL
150 DENSITY=PIXL/255
160 FOR G=l TO 3
170 FOR H-l TO 10
180 K=RND
190 IF K > DENSITY THEN GOT0 210
200 PSET (A+H-l,B+G-1)
210 NEXT H
220 NEXT G
230 NEXT A
240 NEXT B
250 INPUT xXx$

12

